The Concise Common Workflow Language

Arun lIsaac

Department of Computational and Data Sciences
Indian Institute of Science, Bengaluru — 560012

October 8, 2021



Why workflow languages?

Why not just use shell scripts?

Separate housekeeping code from actual processing
Isolate inputs, outputs and steps

Better error reporting on failed steps

Automatically handle running in different software and
hardware environments (containers, clusters, etc.)

Distinguish between string inputs and file inputs

Human readable and machine inspectable language



CWL vs ccwl

The Common Workflow Language and the Concise Common Workflow Language

Common Workflow Language
m A CWL YAML specification is too verbose.
m Too many files! Each step has to have its own CWL file. And
these need to be wired up together into a workflow CWL file.
Concise Common Workflow Language
m Reduce the verbosity of CWL by auto-generating most of it
m To the user, writing ccwl should be as simple as writing a shell
script, or at least, a Makefile
m Good compile-time warnings so errors can be caught early



Demo

A spell check workflow?

sort-and-deduplicate

'Example from dgsh; see https://github.com/dspinellis/dgsh


https://github.com/dspinellis/dgsh

Prior art

Spell check in dgsh, the directed graph shell

{{
tr —cs 'A~Za—z' '\\n' |
tr 'AZ' 'a—z' |
sort —u
sort /usr/share/dict/words

I3

comm —23



Summary

Rationale

Why workflow languages? Automatically handle housekeeping
tasks (managing intermediate files, checking for
success of sub-steps, etc.)

Why CWL? Ability to reason about workflows, generate graphical
representations without running them

Why ccwl? Much more concise, and easier to write than CWL.

Aims to be as easy to write as a shell script or
Makefile.



(define split—words
(command #:inputs file

#run Htr” ”——Complement”
"——squeeze—repeats” "A-Za—z" "\\n"
#:stdin file

#:outputs (words #:type stdout)))

(define downcase
(command #:inputs file
#Hirun "tr" "A-Z" "a-2z"
#:stdin file
#:outputs (downcased #:type stdout)))



(define sort—and—deduplicate
(command #:inputs file
#:run "sort”
#:stdin file
#:outputs (sorted—and—deduplicated

#:type stdout)))

——unique”

(define sort
(command #:inputs file
#:run "sort” file
#:outputs (sorted #:type stdout)))



(define find—misspellings
(command #:inputs words dictionary
#:run "comm” "—23" words dictionary
#:outputs (misspellings #:type stdout)))



(workflow (text—file dictionary)
(pipe (tee

(pipe (split—words #:file text—file)
(downcase #:file words)
(sort—and—deduplicate
#:file downcased))

(sort #:file dictionary))

(find—misspellings

#:words sorted—and—deduplicated

#:dictionary sorted)))



	Appendix

